Step of Proof: adjacent-append
11,40
postcript
pdf
Inference at
*
1
1
2
1
1
2
I
of proof for Lemma
adjacent-append
:
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
L1
:
T
List
5.
L2
:
T
List
6.
i
: {0..(||
L1
@
L2
|| - 1)
}
7.
x
=
L1
[
i
]
8.
y
=
L2
[((
i
+1) - ||
L1
||)]
9.
i
< ||
L1
||
10.
(
i
< (||
L1
|| - 1))
y
= hd(
L2
)
latex
by Subst ((
i
+1) - ||
L1
||) ~ 0 (-3)
latex
1
: .....equality..... NILNIL
1:
((
i
+1) - ||
L1
||) ~ 0
2
:
2:
8.
y
=
L2
[0]
2:
9.
i
< ||
L1
||
2:
10.
(
i
< (||
L1
|| - 1))
2:
y
= hd(
L2
)
.
Definitions
s
~
t
,
n
-
m
,
n
+
m
,
||
as
||
,
#$n
origin